

15EC36

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Engineering Electromagnetics

Time: 3 hrs .
Max. Marks: 80

## Note: Answer any FIVE full questions, choosing ONE full question from each module. <br> Module-1

1 a. A charge $\mathrm{Q}_{\mathrm{A}}=-20 \mu \mathrm{C}$ is located at $\mathrm{A}(-6,4,7)$ and a charge $\mathrm{Q}_{\mathrm{B}}=50 \mu \mathrm{C}$ is located at $\mathrm{B}(5,8,-2)$ in free space. If distances are given in meters, find the vector force exerted on $\mathrm{Q}_{\mathrm{A}}$ by $\mathrm{Q}_{\mathrm{B}}$.
(06 Marks)
b. A charge of $-0.3 \mu \mathrm{C}$ is located at $\mathrm{A}(25,-30,15)$ (in cm ) and a second charge of $0.5 \mu \mathrm{C}$ is located at $B(-10,8,12) \mathrm{cm}$. Find Electric field intensity (E) at
(i) the origin
(ii) $\mathrm{P}(15,20,50)$,cm .
(08 Marks)
c. Define electric flux density.
(02 Marks)

## OR

2 a. Calculate the total charge within the universe of $\rho_{v}=\frac{e^{-2 r}}{r^{2}}$.
(04 Marks)
b. Infinite uniform line charges of $5 \mathrm{nC} / \mathrm{m}$ lie along the (positive and negative) x and y axes in free space. Find Electric field intensity ( E ) at $\mathrm{P}_{\mathrm{A}}(0,0,4)$
(04 Marks)
c. Calculate Electric flux Density (D) in rectangular coordinates at point $\mathrm{P}(2,-3,6)$ produced by
(i) a point charge $\mathrm{QA}=55 \mathrm{mC}$ at $\mathrm{Q}(-2,3,-6)$;
(ii) a uniform line charge $\rho_{\mathrm{LB}}=20 \mathrm{mC} / \mathrm{m}$ on the x -axis.
(08 Marks)

## Module-2

3 a. State and explain Gauss law in electrostatics.
(04 Marks)
b. Derive the expression for electric field intensity due to an infinite line charge using Gauss law.
(04 Marks)
c. In the region of free space that includes the volume $2<x, y, z<3$, $D=\frac{2}{z^{2}}\left(\right.$ yza $_{x}+x z a_{y}-2$ xya $\left._{z}\right) c / m^{2}$.
(i) Evaluate the volume integral side of the divergence theorem for the volume defines here.
(ii) Evaluate surface integral side for the corresponding closed surface.
(08 Marks)

## OR

4 a. Derive an expression for continuity equation in point form.
(04 Marks)
b. If $\hat{E}=120 \mathrm{a}_{\mathrm{\rho}} \mathrm{~V} / \mathrm{m}$, find the incremental amount of work done in moving a $50 \mu \mathrm{C}$ charge a distance of 2 mm from (i) $\mathrm{P}(1,2,3)$ toward $\mathrm{Q}(2,1,4)$ (ii) $\mathrm{Q}(2,1,4)$ toward $\mathrm{P}(1,2,3)$.
(05 Marks)
c. Current density is given in cylindrical coordinates as $J=-10^{6} z^{1.5} a^{z} \mathrm{~A} / \mathrm{m}^{2}$ in the region $0 \leq \rho \leq 20 \mu \mathrm{~m}$; for $\rho \geq 20 \mu \mathrm{~mJ}=0$.
(i) Find the total current crossing the surface $\mathrm{z}=0.1 \mathrm{~m}$ in the $\mathrm{a}_{\mathrm{z}}$ direction.
(ii) If the charge velocity is $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$ at $\mathrm{z}=0.1 \mathrm{~m}$, find $\rho_{\mathrm{v}}$ (volume charge density).
(07 Marks)

## Module-3

5 a. Starting from Gauss law, derive Poisson's and Laplace's equation.
(04 Marks)
b. Calculate numerical value for potential V and volume charge density $\rho_{\mathrm{v}}$ at $\mathrm{P}\left(3, \frac{\pi}{3}, 2\right)$ if $\mathrm{V}=5 \rho^{2} \cos 2 \phi$.
(06 Marks)
c. Given the spherically symmetric potential field in free space, $\mathrm{V}=\mathrm{V}_{0} \mathrm{e}^{-\mathrm{r} / \mathrm{a}}$, find:
(i) $\rho_{\mathrm{v}}$ at $\mathrm{r}=\mathrm{a}$
(ii) the electric field at $\mathrm{r}=\mathrm{a}$
(iii) total charge.
(06 Marks)

## OR

6 a. State and explain Ampere's law.
(04 Marks)
b. Evaluate both sides of Stoke's theorem for the field $H=10 \sin \theta a_{\phi}$ and the surface $r=3$, $0 \leq \theta \leq 90^{\circ}, 0 \leq \phi \leq 90^{\circ}$. Let the surface have the $\mathrm{a}_{\mathrm{r}}$ direction.
(06 Marks)
c. Using the concept of vector magnetic potential, find the magnetic flux density at a point due to long straight filamentary conductor carrying current I in the $\mathrm{a}_{z}$ direction.
(06 Marks)

## Module-4

7 a. Derive an expression for the force on a differential current element placed in a magnetic field.
(04 Marks)
b. A point charge for which $\mathrm{Q}=2 \times 10^{-16} \mathrm{C}$ and $\mathrm{m}=5 \times 10^{-26} \mathrm{~kg}$ is moving in the combined fields $E=100 a_{x}-200 a_{y}+300 a_{z} V / m$ and $B=-3 a_{x}+2 a_{y}-a_{z} m T$. If the charge velocity at $t=0$ is $V(0) . V(0)=\left(2 a_{x}-3 a_{y}-4 a_{z}\right) 10^{5} \mathrm{~m} / \mathrm{s}$.
(i) Give the unit vector showing the direction in which the charge is accelerating at $\mathrm{t}=0$.
(ii) Find the kinetic energy of the charge at $t=0$.
(06 Marks)
c. A rectangular loop of wire in free space joins points $\mathrm{A}(1,0,1)$ to $\mathrm{B}(3,0,1)$ to $\mathrm{C}(3,0,4)$ to $\mathrm{D}(1,0,4)$ to A. The wire carries a current of 6 mA , flowing in the $\mathrm{a}_{z}$ direction from $B$ to $C$. A filamentary current of 15 A flows along entire z axis in the $\mathrm{a}_{\mathrm{z}}$ direction.
(i) Find ' $F$ ' on side BC
(ii) Find ' $F$ ' on side $A B$
(iii) Find $\mathrm{F}_{\text {total }}$ on the loop.
(06 Marks)

## OR

8 a. Given a material for which $\mathrm{x}_{\mathrm{m}}=3.1$ and within which $\mathrm{B}=0.4 \mathrm{ya}_{\mathrm{z}} \mathrm{T}$, find:
(i) H
(ii) $\mu$
(iii) $\mu_{r}$
(iv) M
(v) J
(04 Marks)
b. Let $\mu_{r_{1}}=2$ in region 1 defined by $2 x+3 y-4 z>1$ while $\mu_{r_{2}}=5$ in region 2 where $2 x+3 y-4 z<1$. In region $1, H_{1}=50 a_{x}-30 a_{y}+20 a_{z} A / m$. Find:
(i) $\mathrm{H}_{\mathrm{N}_{1}}$
(ii) $\mathrm{H}_{\mathrm{t}_{1}}$
(iii) $\mathrm{H}_{\mathrm{t}_{2}}$
(iv) $\mathrm{H}_{\mathrm{N}_{2}}$
(v) $\theta_{1}$ the angle between $\mathrm{H}_{1}$ and $\mathrm{a}_{\mathrm{N} 21}$
(08 Marks)
c. Obtain an expression for the total energy stored in a steady magnetic filed in which ' B ' is linearly related to 'H'.
(04 Marks)

## Module-5

9 a. Write Maxwell's equations in integral and point forms.
(06 Marks)
b. Using Faraday's law, deduce Maxwell's equation, to relate time varying electric and magnetic fields.
(06 Marks)
c. Explain the displacement current and displacement current density.
(04 Marks)

## OR

10 a. Derive wave equations for uniform plane wave in free space.
(06 Marks)
b. Derive an expression for propagation constant intrinsic impedance and phase velocity for a uniform plane wave propagating in a conducting media.
(06 Marks)
c. In free space $E(x, t)=50 \cos (\omega t-\beta x) a_{y} V / m$. find the average power crossing a circular area of radius 5 m in the plane $\mathrm{x}=$ constant.
(04 Marks)

